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parameters. While we cannot reject the proposal of 
Comes, Lambert & Guinier, the present analysis does 
show that it is in fact possible to determine the structure 
with reasonable accuracy when the correlation problem 
is avoided by the use of both X-ray and neutron dif- 
fraction data. 

After this work was completed, the authors became 
aware of an unpublished refinement of a previous neu- 
tron diffraction analysis by Frazer (1962) with the fol- 
lowing results: 

AzTi =0"014 + 0"002 
Azo(t) = 0"0249 + 0.0006 
/Izo(2) = 0"0156 + 0'0007 

B33(Ba) = 0.42 + 0.08 
B33(Ti) =0"45_0.05 
B33[O(1)] =0"35 ~ 0'04 
B33[O(2)] =0.47 + 0.02 
Bxl(Ba) =0 .30+0.02  
Bn(Ti) = 0.56 + 0-06 
Bn[O(1)] =0.46 + 0.02 
B~1[O(2)1 =0.55 + 0.04 
Bzz[O(2)] =0.45 + 0.02 

A2 

The position parameters of tb.is refinement are in 
excellent agreement with our results, but the temper- 
ature parameters are not. Use of the above values with 
our X-ray and neutron data results in higher values of 
the reliability indices than those obtained with our 
position and temperature parameters. 
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X-ray Ditfraetion from Hexagonal Close-Packed Crystal~ with Deformation Stacking Faults. 
II. Effect of Change in Layer Spacing at Faults 
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The Christian-Gevers theory of X-ray diffraction from hexagonal close-packed crystals with deforma- 
tion stacking faults is extended to include the effect of change in layer spacing-at the faults. The results 
show that integral breadths as well as integrated intensities remain unaffected to a first approximation. 
The principal effect is to introduce peak shifts, the magnitude and direction of which depend on the 
reflexion. 

Introduction 

Diffraction effects due to the presence of deformation 
stacking faults in h.c.p, crystals are predicted under 

the following assumptions (Christian, 1954; Gevers, 
1954; Lele, Anantharaman & Johnson, 1967): 
(1) the crystal is infinite in size and is free from distor- 

tions; 
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(2) the scattering power is the same for all the close- 
packed planes; 

(3) there is no change in the lattice spacing at the 
faults; 

(4) the faults are distributed at random; 
(5) the faults extend over entire domains. 

The effects of the simultaneous presence of stacking 
faults and strains in a finite crystal have been con- 
sidered by Warren (1959), while the effects of changes 
in scattering power have been considered in part I 
(Lele, 1969). 

Following Wagner, Tetelman & Otte (1962), a spa- 
cing fault may be defined as a displacement of a close- 
packed plane perpendicular to itself. A spacing fault 
thus changes the interlayer distance where it occurs. 
Such changes are unlikely to occur in close-packed 
metals because of the non-directional nature of the 
bonding. However, stacking faults produce localized 
regions of a different structure, which may give rise to 
a change in bond length and hence the lattice spacing. 
It thus appears that while spacing faults may not occur 
independently, they may occur in conjunction with 
stacking faults. Such a configuration is defined as a 
layer fault. Diffraction effects from spacing faults oc- 
curring in conjunction with deformation faults in face- 
centred cubic (f.c.c.) crystals have been described by 
Wagner, Tetelman & Otte (1962). 

The present paper deals with the theory of X-ray 
diffraction front h.c.p, crystals with. spacing and layer 
faults. The calculations have been made under assump- 
tions (1), (2), (4) and (5) listed above. 

The following considerations apply to layer faults 
only. Consider the sequence of close-packed (0002) 
layers in Fig. 1, where the faulted positions are denoted 
by F. A layer is designated hexagonal (h) if the layers 
adjacent to it are of the same type (e.g. B in the 
sequence ABA) and cubic (c) if they are of different 
types (e.g. B in the sequence ABC) (Jagodzinski, 1949). 
The spacings between layers of the type h and h, h and 
c, c and c may be expected to be different and are as- 
sumed to be 1A31/2, (1 +6/2)[A31/2, (1 +6)1A31/2 re- 
spectively. It may be noted that when several faults 
occur in succession, the f.c.c, structure is developed 
only at the boundaries of the set of faults, so that the 
spacings change only at these boundaries. Conse- 
quently, the total change in spacing in an m layer se- 
quence is dependent not only on the total number of 
stacking faults but also on their arrangement in the 
crystal. 

Formulation of the problem 

We use the hexagonal axes Ai, A2 and A3 (IA3[ being 
twice the interlayer spacing). The position vector of 
the atom mimE in the layer m3 is given by 

Rm = rnlA1 +mzA2 +½m3A3 +½AafiPm3 +fqm3, (1) 

where ½A36Pm3 and fqm3 are respectively the displace- 
ments of layer rn3 perpendicular and parallel to its 
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Fig. 1. Stacking sequences of (0002) planes. Faulted positions 
are denoted by F; the environment of the layers is indicated 
by h (hexagonal) or c (cubic). 

own plane, and the stacking displacement vector 

f = ½ ( A t - A 2 ) .  (2) 

The diffracted intensity is given by 

l(s, So)= ~] ~] exp [(2zei/2) ( s - s0 ) .  (Rm-Rm' ) ] ,  (3) 
m m t 

So and s being unit vectors in the direction of the in- 
cident and diffracted beams. In terms of the vectors B~, 
B2 and B3 (the reciprocals of A1, A2 and A3) and con- 
tinuous parameters hi, h2 and h3, we have 

(S-So) 
= hlBl +h2B2 +h3B3 • (4) 

2 

Substituting from equations (1), (2) and (4) in (3), we 
obtain 

I(h~hah3)= ~ ~ exp [2rci{h,(ml - m]) + h2(m2- m'2) 
m m" 

1 + 2-hdm3-m3)}] 
/ 

x exp [rci{h3fi(Pm3-Pm3)+(2) (hi-h2) 

x(qm3-qm3)}]. (5) 

Carrying out the summations over ml, m~, m2 and m~ 
and introducing 

m = m  3 - m  3 

pm=Pm3-Pm; (6) 

qm = qm3 - qm'3 
we get 

i(h3)= ~,z ~] ~ exp [~rimh3] exp [i~om], (7) 
m 3 m 

where [ i f 2  is a function of ha and h2, which vanishes 
except when hi = H and h2 = K and 

2re 
~Om=rch36Pm+ 3 ( H - K ) q m .  (8) 

Since pm and qm and hence ~om are stochastic variables 
taking different values for different m3, we may re- 

A C 2 6 A  - 4 
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place exp [i~om] by its average and drop the summation 
over m3. Thus 

I(h3)= g/z ~ exp [rcimh3l(exp [i~om]). (9) 
m 

Two types of planes can be distinguished in the h.c.p. 
structure. A plane is of 'A' type if, in the absence of 
a fault, q~ = + 1 ; it is of 'B' type if q~ = - 1. The phase 
differences ¢pm a and pB m in a sequence of m planes start- 
ing with A and B type planes respectively are given by 

~Oam,mk ,.kz = rch36p 
2ZC [ 1--(-- 1) m 

+-3 (H--K) [ 2 

- 2 ~ ( H - K ) 3  [ 1- ( -1)m2 

+2(ka-k2)]  ; (lOa) 

+2(k1-k2)]  ; (10b) 

where k~ and k2 are the numbers of faults on the even 
- and odd - numbered planes respectively and p is a 
particular value of pro(compatible with the presence 
of the above number of faults in the case of layer 
faults). For spacing faults only, k l = k 2 = 0  and p be- 
comes simply the number of spacing faults. 

Spacing faults 
The probability of obtaining a phase difference ~mAp 
(or q~mB p) is simply the product of the probability P(A) 
[or P(B)] of having an A (or B) type plane at the origin 
and the probability P(m,p) of obtaining p spacing 
faults in an m plane sequence. Since 

P(A)=P(B)=½, 
we may write 

@xp [i~om]) 
=½ ~ P(m,p){exp [iq)mAa,]+exp [ifpBma,] }. (11) 

P 

To evaluate P (m, p), consider an m plane sequence with 
p spacing faults. This may be obtained from ( m - 1 )  
plane sequences with ( p - 1 )  and p spacing faults re- 
spectively by adding the mth plane with and without 
a spacing fault. Thus 

P ( m , p ) = o ~ P ( m - l , p - 1 ) + ( 1 - o O P ( m - l , p ) ,  (12) 

where c~ is the probability of the occurrence of a fault. 
The solution of this difference equation is 

m! 
P(m, p ) -  p!(m-p}i  ~ ( 1 - e ) m - : °  " (13) 

Considering the cases H - K = O  mod 3 and H - K # O  
mod 3 separately and substituting from equations (10) 
and (13) in (11), we get, after simplification, 

(exp [@m]) = exp [zcimh3o~6] 
for H - K = O  rood 3, 6~1  , (14a) 

(exp [iq)ra]) =¼[1 + 3 ( -  1) m] exp [rcimh3oc6] 
for H - K # O  mod 3, 0 4 1  . (14b) 

The above expressions are approximations valid only 
for small values of 6. Substitution in equation (9) gives 
for the diffracted intensity 

I(h3) = ~2 ~ exp [rchnh30~6] exp [rHmh3] 
IH 

for H - K = 0 m o d 3 , 6 ~ l ,  (15a) 

g/2 
l(h3)= ~ ~ [1 + 3(-1)m]exp [nimh3o~6]exp [~zimh3] 

m 

. . . .  2~- cos 2zorn . 2 + 

3N 2 [ {h3( l+0~6)-L L +  1_}] 
+ ~ ~ cos 2rcm . . . . .  2 - -  + ---2 

m 

for H - K # O  rood 3, 6,¢1 . (15b) 

For H - K - 0  mod 3, the intensity has a sharp sym- 
metrical peak at h3 =L(1 +~6) -1 if L is even. There is 
thus a peak shift of -Lo~6. For H - K - C 0  rood 3, the 
first term in equation (15b) gives a sharp symmetrical 
peak at h3=L(1 +~6) -1 if L is even and the second 
gives a sharp symmetrical peak at h3=L(1 +c~6)-1 if L 
is odd. Again the peak shift is -Lo~6. The peak shift 
in terms of 20 is given by 

360 LZd z A(20) o _ 7~ c2 . (tan 0) ~6, 6,~1 (16) 

for all reflexions. It may be noted that the peak shifts 
are equivalent to a change of the c parameter to 
c(1 +~6). 

Layer faults 
An equation analogous to equation (11) for the case 
of spacing faults may be written as follows: 

(exp [iq)m])=½ ~ ~ ~ P(m,p, ka, k2) 
p k l  k 2  

{exp [iq~A,p.kl.kZ] +exp [@~.p.l,,.kz]}, (17) 

where P(m,p, ka, k2) is the probability of having kl 
and k2 faults on even-and odd-numbered planes re- 
spectively, distributed so that they give rise to an 
additional shift o fp  in a direction perpendicular to the 
stacking plane. To evaluate P(m, p, kl, k2), consider an 
m plane sequence. Now add the (m + 1)th layer. This 
may be done without the introduction of a fault with 
probability (1 -c0  or with the introduction of a fault 
with probability c~. The mth plane may be of hexagonal 
or cubic type depending on the relative positions of 
the ( m - 1 ) t h  and ( m +  1)th planes with respect to it. 
Thus there are four possibilities: 

(1) the mth plane is hexagonal and the (m + 1)th plane 
is added without a fault; 

(2) the mth plane is hexagonal and the (m + 1)th plane 
is added with the introduction of a fault; 
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(3) the mth plane is cubic and the (m + 1)th plane is 
added without a fault; 

(4) the mth plane is cubic and the (m + 1)th plane is 
added with the introduction of a fault. 

Let the probabilities for the above four possibilities be 
pnu(m, p, k~, k2), phi(m, p, k~, k2), pcu(m, p, kl, k2) and 
PCY(m, p, kl, kz) respectively (the letters h, c, u and f i n  
the superscripts stand for hexagonal, cubic, unfaulted 
and faulted respectively). It is obvious that 

P(m, p, k~, k2) = P~U(m, p, kl, kz) + Phf(m, p, k~, k2) 

+pcu(m,p, kl, kz)+PCI(m,p, kl, k2 ) . (18) 

Remembering that additional displacements (6/2) 
(1A3]/2) and (6)(1A31/2) perpendicular to the close- 
packed planes occur between pairs of planes of the 
type ch and cc respectively, and further that faults oc- 
curring on even- and odd-numbered planes are counted 
in kl and k2 respectively, the following recurrence rela- 
tions can be derived: 

phu(2m + 1, p, kx, k2)= (1 - ~ )  [PhU(2m, p, kl, k2) 
+pcu(2m, p-½, kl, k2)], m > 0 ,  (19a) 

Phf(2m +l ,  p, kl, kz)=c~[Pnf(2m, p, k~, k2-1)  
+Pcf(2m, p - S ,  kl, k2-1)],  m>_O, (19b) 

PcU(2m + I, p, kl, k2) =(1 - ~ )  [Phf(2m, p - S ,  kx, k2 -  1) 
+PcI(2m, p - l ,  kbk2 -1 ) ] ,  m>_O, (19c) 

Pe~(2m + 1, p, ka, k~)=~[PhU(2m, P - S ,  k~, k2) 
+pcu(2m, p - l ,  kl, kz)], m > 0 ,  (19d) 

P~U(2m, p, kx, k2)=(1-00 [PhU(2m--1, p, k~, k2) 
+pcu(2m- l , p -S , k~ , k2 ) ] ,  m > l ,  (19e) 

Phf(2m, p, ka, k2) = ~[Pnf(2m - 1, p, kl - 1, k2) 
+ P c f ( 2 m - l , p - ½ ,  k l - l ,  kz)], m> l , (19f) 

PCU(2m, p, k~, k2)=(1 -a )  [Phl(2m--1, p--½, k~-  1, k2) 
+ P c f ( 2 m - l , p - l , k ~ - l ,  kz)], m > l ,  (19g) 

PcY(2m, p, ky, kz)=c~[PhU(2m--1, p--½, kl, k2) 
+ p c u ( 2 m - l , p - l , k ~ , k ~ ) ] ,  m > l .  (19h) 

Solving equations (19a), (19b), (19c) and (19f) for 
ecu( 2m, P - S ,  kl, k2), PCf( 2m, p - S ,  kl, k z -  1), 
PcU(2m - 1,p - -~-, kl, kz) and Pef(2m - 1 ,p - S, kl - 1, k2) 
respectively and substituting these values in equations 
(19c), (19d), (19g) and (19h), we obtain 

o~2phu(2m -t- 1, P - S ,  kl, k2)= 
(1 - ~)pn1(2m +2, p +S, k~ + 1, k2) 
- ~ ( 1 - o 0 P h f ( 2 m + l , p + S ,  k~, k2), m>_0, (20a) 

( 1 -  ~)2Phf(2m + 1, p - S ,  kx, k2) = 
o~PhU(2m +2, p +½, kl, k2) 
- ~ ( 1 - ~ ) P h U ( 2 m + l , p + S ,  kl, k2), m > 0 ,  (20b) 

o~2PhU(2m, p--½, kl, k2) = 
(1 - 00Phf(2m + 1, p +S, kl, k2 + 1) 
-~(1-o0Phf(2m, p+S,  kl, k2), m> 1 , (20c) 

(1 --o02Phf(2m, p - S ,  kl, k2)= 
~P hU(2m + 1, p + S, k l, k2) 
--c~(1--o0PhU(2m, p+S,  kl, k2), m> 1 . (20d) 

Substituting from equations (20b) and (20d) for 
PhY(2m + l, p - S ,  kl, k2) and Phf(2m, p - S ,  kl, k2) re- 
spectively in equations (20a) and (20c), we have, after 
rearrangement, 

(1 -oopnu(2m +2, p +3, ki + 1, kz) 
+o~Phu(2m +2, p +3, kl, k2) = 

phu( 2m+3, P +3, kl +1, k2) 
+c~(1 - a )  [PhU(2m + 1, p +3, kl, k2) 
-phu(2m+l ,p-S,  kl, k2)], m > 0 ,  (21a) 

(1 -oOPhu(2m+l, p+~,  kl, k2+l )  
+o~phu(2m + 1, p +3, ka, k2) ---- 

PhU(2m +2, p +3, kl, k2 + 1) 
+0c(1-00 [PhU(2m, p +3, kl, k2) 
-Phu(2m, p - S ,  kbk2)], m > l .  (21b) 

Inserting (kl - 1) in place ofk~ in equation (21b), we get 

(1 -oOpnu(2m + l, p + 3, k l -  1, kz+l )  
+ocPhU(2m + 1, p +3, kl - 1, k2) = 

phu(2m +2, p +3, k~-  1, k2 + 1) 
+~(1-00 [P~U(2m, P+3,  k l - 1 ,  k2) 
-phu(2m, p - S ,  k l - l ,  k2)], m> l . (21c) 

Multiplying equations (21b) and (21c) by ( l - a )  and 
c~ respectively, adding them, substituting from equation 
(21a) and simplifying, we get 

phu(2m + 3, p +3, kl, k2+ 1)= 
( 1  - oOzPhu(2m + 1, p +3, kl, k2 + 1) 

+~2pku(2m + 1, p +~2, k l -  1, k2) 
+7(1 -~)[Phu(2m + 1, p - S ,  kl - 1, k2 q- 1) 
+ P hU(2m + 1, p -- S, kl, k2)] 
-~2(1--oO2[phu(2m-- 1, p+3_, k l -  1, k2) 
- 2 p n u ( 2 m -  1, p - S ,  kl - 1, k2) 
+ P n U ( Z m - l , p - S ,  k1-1,k2)],, m> l. (22) 

Similar expressions can be found for PhI(2m + 1, p, kl, 
kz) etc. and utilizing equation (18), we obtain 

P(m, p, kl, k2)=( I -oOzP(m-2 ,  p, kl, k2) 
+~2p(m-2 ,  p, k a -  1, k2-1)  
+cffl - c  0 [P(m-2,  p - 2 ,  k~, k2-1)  
+ P (m - 2, p - 2, kl - 1, k2)] 
- c d ( 1 -  002[P(m-4, p, k l - I ,  k2-1)  
- 2 P ( m - 4 ,  p - 2 ,  k l -  1, k2-  1) 
+ P ( m - 4 , p - 4 ,  k l - l , k 2 - 1 ) ] ,  m>5.  (23) 

A C 2 6 A  - 4*  
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Instead of solving this difference equation, we will solve 
a simpler difference equation in (exp [i(om]), which can 
be obtained by substitution from equations (10) and 
(23) in equation (17). 

(i) H - K = O  rood 3 
From equation (10), ~0m is independent of kl and k2 

and therefore the probability P(m, p) should be used 
in equation (17), where P(m,p)  is the probability of 
obtaining an additional phase shift gh36p in an m plane 
sequence irrespective of the number of faults. A little 
consideration shows that 

P(m, p ) =  ~] ~] P(m, p, kl, k2). (24) 
k l  k 2  

Substituting from equation (23) in the above, we get 

P(m, p ) = ( 1 - 2 ) , ) P ( m - 2 ,  p) 
+ 2yP (m - 2, p - 2) + 2),2P (m - 4, p - 2) 
- 7 2 [ p ( m - 4 , p )  + P ( m - 4 ,  p - 4 ) ] ,  m > 5,  (25) 

where ), = ~(1 - ~) ~_ ~ for small values of c~. From equa- 
tions (10), (17) and (25), we get 

(exp [igm]) = { (1-2) ' )+  2)' exp [2zcih36]}( exp [i~0m-2]) 

-),2{1-exp[2zcih3fi]}2(exp [ifpm-4]), m_>5. (26) 

Letting 

(exp [i~ara])= Cx m , m > 1, (27) 

we obtain from equation (26) 
x 4 -  {(1-27) +2)' exp [2rcih36]}x 2 

+),2{1 - e x p  [2rcih36]}2=O, (28) 

the solutions of which are 

x =  + ½[1 + {1-4) '  +4?) exp [2rcih36]}t/2]. (29) 

Utilizing the initial conditions 

(exp [i~0t]) = 1 - 3)' +2)' exp [rcih36/2] 
+ ),exp [rcih3d] , (30a) 

(exp [i~02])= 1 -4 ) '  + 2)' 2 + 2),(1 - 2)') exp [~ih36/2] 
+4) '  2 exp [rcih36] +2),(1-2) ')  exp [3rah36/2] 
+2)' 2 exp [2zcih36], (30b) 

we get from equations (26), (27) and (29) 

(exp [icpm]) =exp [2rcimh3),6] 
for H - K = 0 m o d 3 ,  6,~1 (31) 

for small 6. Substitution in equation (9) gives for the 
intensity 

I(h3) = V 2 ~ exp [2zcimh3),6] exp [zcimh3] 
m 

= V 2 ~ ' C O S [  2 z c m { h 3 ( l + 2 ) ' 6 ) - L m  2 .... + L } ]  

for H - K = 0 m o d 3 ,  6<{1 . . (32 )  

This expression represents a sharp symmetrical peak 
at h3--L(1 +2)'6) -1 for L even. There is a peak shift 
which in terms of 20 is given by 

720 L2d 2 
A(20) ° = -  - -  ( t a n 0 ) ) ' 6  

7~ C 2 " " 

for H - K = O  mod 3,  d,~.l .  (33) 

(ii) H -  K ¢  0 mod 3 
Substituting from equations (10) and (23) in (17), 

we get 

(exp [i~Om]) = {(1 -- 2)') -- ), exp [2rcih3d]}(exp [i~0m-z]) 

_ ),2{1 - e x p  [2nih36]}2(exp [i~0m-4]), 

m > 5 .  (34) 

Let the solution of this equation be of the form 

(exp [iq)m])= Cy m , m > 1 , 

so that 

(35) 

where 

(exp [i~011) = -½{ 1 - 3)' -t- 2)' exp [~/h36/2 ] 

+), exp [rcih36]}, (37a) 

(exp [#p2])= 1-4) '  + 2)' 2 + 2),(1 - 2~) exp [nih36/2] 
+),2 exp [nih36] 

- ),(1 - 2)') exp [3rcih36/2] - ?,2 exp [27rih36] , 

(37b) 

in conjunction with equations (35) and (36). Thus 

[ 2 0 - 1  2 0 + 1 ]  
(exp [icpm])= L--40-- + ( -  1)m" 40--1 elml 

x exp [ -  rcilmlh3),6] 
for H - K # 0 m o d 3 ,  6,~.1, (38) 

0 = ( 1  - 3)'),/2. (39) 

Substitution in equation (9) gives for the intensity 

I(h3) = ~2 2 0 - 1  • - 40 ~ 0 lml exp [zrilmlh3(1-),6)] 
m 

+ V2 20 + 1 
"--40 ~= (-O)lmlexp[nilmlh3(1-) 'a)] 

f o r H - K # 0 m o d 3 ,  6 ,~1.  (40) 

Summing the geometric series in equation (40), we 

1 

Y= + 1/~ [ 1 - 2 7 - 7  exp [2~zih33] 

+ {(1 - 37 exp [2~tihaa]) 
x (1 - 47 + 7 exp [2rahaJ])}l/2],/a . (36) 

The solution of equation (34) can be obtained by using 
the initial conditions" 
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obtain 

I ( h 3 )  = ~ 2 .  _ _ _  

1"- I / J  , - -  .. 

20 - 1 1 - -  0 2 

40 " 1 - 2Q c o s  [;n:h3(1 - ?,6)] + 0 2 

20 + 1 1 - -  k0 2 

40 " 1 + 20 cos [7rh3(1  - ?,6)] + ~0 2 

for H - K ¢ 0 m o d 3 ,  6 ,~1 .  (41) 

The first term on the right hand side of equation (41) 
represents a symmetrically broadened peak at h3= 
L (1 -y6 )  -1 for L even, while the second represents a 
symmetrically broadened peak at h3 = ( 1 -  2,6) -1 for L 
odd. There is thus a peak shift which in 20 coordinates 
is given by 

360 LZd 2 
A(20)°= + . . . .  (tan 0) ?'fi 

7Z C 2 " " 

for H - K ¢ 0 m o d 3 ,  6,~.1. (42) 

posite direction. Again, the integrated intensity or the 
broadening is not affected by layer faults. 

An estimate of c~6 can be obtained from measure- 
ments of peak shifts for spacing as well as layer faults. 
In the case of layer faults the parameter ~ can be 
estimated independently from measurements of the 
integral breadths. Inserting this value in ~6, one can 
obtain & 

Finally, we note that since deformation stacking 
faults give rise to changes in integrated intensity and 
to peak broadening but not to peak shifts, estimates of 

are not affected by changes in layer spacing at the 
faults. 

The author is grateful to Dr T. R. Anantharaman, 
Professor and Head, Department of Metallurgy, Bana- 
ras Hindu University, for encouragement and to the 
University Grants Commission, New Delhi, for the 
award of a Senior Research Fellowship. 

Conclusions 

To summarize the results, we find that spacing faults 
give rise to peak shifts for all reflexions which are 
equivalent to a change of the c parameter to c(1 +~6). 
There are no changes in the integrated intensity and 
the reflexions remain sharp and symmetrical. The re- 
sults for layer faults are slightly complicated in that 
reflexions with H - K = O  rood 3 are shifted twice as 
much as those with H - K ~ O  mod 3 and in the op- 
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Contrast Reversal of Kikuehi Lines with Specimen Thickness 
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(Received 29 May 1969 and in revised form 11 August 1969) 

In normal Kikuchi patterns a defect line and an excess line pass through the incident spot and a dif- 
fracted spot respectively, when the Bragg condition is satisfied. By means of selected area diffraction 
at 80 kV accelerating voltage, Kikuchi patterns were recorded from various thicknesses of a silicon 
crystal. Normal contrast was obtained from regions where the thickness was (n + ½)l, where l is the 
extinction distance and n is an integer, while the contrast was reversed for those regions where the 
thickness was nl. This result, can be explained by a theory of inelastic scattering; it is contrary to that 
obtained by Thomas & Bell (Proc. Fourth European Regional Conf. Electron Microscopy, Rome 
(1968), 283) where normal contrast was obtained for nl and reversed contrast for (n+ ¼)I. 

1. Introduction 

Electron diffraction patterns from fairly thick speci- 
mens (several thousand Angstrom) consist of Bragg 
spots and Kikuchi patterns. Kikuchi (1928) interpreted 
Kikuchi lines as being the interference pattern from 
Bragg reflexion of inelastically scattered electrons, and 

the main features of their geometry and contrast (excess 
or defect) were explained by this simple theory. 

Secondary maxima in the Kikuchi lines similar to 
those observed in the case of diffraction spots were ob- 
served by Uyeda, Fukano & Ichinokawa (1954) in 
diffraction patterns from a thin film of molybdenite. 
Kainuma's (1955) theory of Kikuchi lines explains 


